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Exposure to amphibole asbestos is associated
with the development of mesotheliomas,
lung cancers, and fibrotic lung diseases (1,2).
Therefore, man-made and natural mineral
fibers often have been substituted for
asbestos. Although numerous inhalation
studies demonstrated no significant increase
in tumor incidence in animals exposed to
such substitutes (3–5), several mineral fibers
(refractory ceramic fiber and fiber glass) were
carcinogenic in rodent chronic inhalation
studies (6,7). Morover, in animal intraperi-
toneal studies, the fiber length of asbestos
and other mineral fibers has been found to be
one of the major descriptors of tumorigenic-
ity (8–10). Therefore, we considered that the
extensive knowledge on asbestos may apply
to other mineral fibers’ tumorigenicity. 

The concept that reactive oxygen species
(ROS) such as hydrogen peroxide, superox-
ide, and the hydroxyl radical may underlie the
pathogenesis of derangement has become the
focus of extensive research in asbestos fibers
(11). Reactive oxygen species, especially the
hydroxyl radical, can alter biologic macromol-
ecules including proteins, cell membrane
lipids, DNA, and RNA, causing cellular dys-
function, cytotoxicity, and possibly malignant
transformation from asbestos fibers (11–13).

However, hydroxyl radical activity differs
among three tumorigenic fibers: amosite
asbestos, silicon carbide, and refractory
ceramic fiber (RCF). Amosite and RCF
release hydroxyl radicals, whereas silicon

carbide fibers have no hydroxyl radical activ-
ity (13). Therefore, although hydroxyl radi-
cal activity may increase the tumorigenicity
of mineral fibers it is not necessary for it to
occur. Moreover, the results from numerous
intrapleural studies led to the conclusion
that basically all types of elongated dust par-
ticles can induce tumors if they are suffi-
ciently long, thin, and durable in the tissue
(5,8,10,15). Our study focuses on the super-
oxide induced in asbestos or other mineral
fibers, and on the relationship between the
ability to induce superoxide and the fiber
size of various mineral fibers. 

Long asbestos fibers, such as chrysotile
and amosite, are more effective than short
fibers in eliciting the release of superoxide
from macrophages (16). Among various
mineral particles, fibrous dust causes a signif-
icant increase in the release of superoxide
from macrophages (11,17), whereas nonfi-
brous particles were less active in this regard
(18). However, only a few studies have
examined in detail the relationship between
length and release of superoxide with man-
made mineral fibers (19,20). Moreover, it
was suggested that fiber length is not an
important factor in the ability of man-made
mineral fibers to induce production of reac-
tive oxygen species in polymorphonuclear
leukocytes (19).

We demonstrated previously a method
for comparing the ability to induce luci-
genin-dependent chemiluminescence (CL)

per fiber from human monocyte-derived
macrophages exposed to nine types of min-
eral fibers of different sizes at the acute phase
of the response (20). We observed that the
ability to induce CL increased with fiber
length at the acute phase of the response,
when the mineral fibers were longer than
approximately 6 µm. Our purpose in this
study was to investigate the time course of
the relationship between fiber length and the
ability to induce CL, and to determine how
fiber width might modify this response with
various mineral fibers. 

Materials and Methods

Mineral fibers. We used the Japan Fibrous
Material (JFM) standard reference samples
provided by the Japan Fibrous Material
Research Association (21), designated by geo-
metric-mean length (micrometers), geometric-
mean width (micrometers), and number of
fibers per unit weight (micrograms): glass wool
(GW1, 20.0 µm; 0.88 µm; 0.7 × 103/µg);
rock wool (RW1, 16.5, 1.8, 1.7); micro glass
fiber (MG1, 3.0, 0.24, 65); refractory ceramic
fiber (RF1, 12.0, 0.77, 8.8; RF2, 11.0, 1.1,
8.7); refractory mullite fiber (RF3, 11.0, 2.4,
3.5); potassium titanium whisker (PT1, 6.0,
0.35, 590); silicon carbide whisker (SC1, 6.4,
0.30, 410); titanium oxide whisker (TO1, 2.1,
1.00, 640); and wollastonite (WO1, 10.5,
1.00, 24). The characterization of these fibers
has been documented elsewhere (21,22). For
example, chemical composition of these fibers
has been demonstrated by X-ray fluorescence
analysis. Fe2O3 is the only iron compound
which was detected in all samples (chemical
composition of Fe2O3, by percentage: GW1,
0.28; RW1, 0.41; MG1, 0.07; RF1, 0.15;
RF2, 0.04; RF3, 0.05; PT1, 0.02; SC1, 0.07;
TO1, 0.04; and WO1, 0.30). Each sample
was dried and heat-sterilized at 80°C for 48 hr
and suspended in fetal bovine serum (FBS) at
a concentration of 1 mg/mL. The suspensions
were incubated for 15 min at 37°C, and
spin-washed three times in Hanks’ balanced
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Fiber size is an important factor in the tumorigenicity of various mineral fibers and asbestos fibers
in animal experiments. We examined the time course of the ability to induce lucigenin-dependent
chemiluminescence (CL) from human monocyte-derived macrophages exposed to Japan Fibrous
Material standard reference samples (glass wool, rock wool, micro glass fiber, two types of refrac-
tory ceramic fiber, refractory mullite fiber, potassium titanium whisker, silicon carbide whisker,
titanium oxide whisker, and wollastonite). We determined how fiber length or width might mod-
ify the response of cells. We found that the patterns of time-dependent increase of CL (sigmoid
type) were similar for each sample except wollastonite. We observed a strong correlation between
geometric-mean length and ability to induce CL in seven samples > 6 µm in length over the time
course (largest r2 = 0.9760). Although we also observed a close positive correlation between geo-
metric-mean width and the ability to induce CL in eight samples < 1.8 µm in width at 15 min (r2

= 0.8760), a sample of 2.4 µm in width had a low ability to induce CL. Moreover, the relation-
ship between width and the rate of increase in ability to induce CL had a negative correlation at
30–60 min (largest r 2 = 0.7473). Our findings suggest that the release of superoxide from
macrophages occurs nonspecifically for various types of mineral fibers depending on fiber length.
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salt solution (HBSS), at 900g for 20 min.
Pellets were resuspended at stepped suspen-
sion concentrations from 10/13 mg/mL to
10 mg/mL, except SC1, which was adjusted
to one-tenth the concentration of other sam-
ples. These suspensions were stored at 4°C. 

Cell isolation. We obtained heparinized
blood from healthy donors by venipuncture
and diluted it 1:1 in HBSS. We isolated
monocyte–lymphocyte fractions by Ficoll
density centrifugation and plated them in 9-
cm-diameter plastic tissue culture dishes for
monocyte adherence (23). We cultured the
adhering cells for 9 days in RPMI1640
HEPES modification (Sigma Chemical Co.,
St. Louis, MO, USA) with 10% FBS, 100
U/mL penicillin, and 100 µg/mL strepto-
mycin. This culture medium was changed
every 2 days. Adherent cells were separated
after 6 days, and suspended in serum-free
RPMI1640. 

Chemiluminescence measurements. The
method of measurement of lucigenin-depen-
dent CL from 6-day-old human monocyte-
derived macrophages exposed to various
mineral fibers has been described (24): The
lucigenin responses increased with the
increasing age of cultures over 6 days, and
Nyberg and Klockars (24) obtained a corre-
lation between lucigenin-dependent CL and
superoxide production measured with the
cytochrome C reduction assay at 6 days of
culture. 

The isolated cells (1 × 105 cells) were
transferred into a luminometer tube con-
taining mineral sample suspension (65 µL),
10% FBS, 0.1 mM lucigenin, and in some
experiments 1,000 U/mL superoxide dis-
mutase (SOD). The final volume of each
tube was 1 mL. The light emission of each
sample was detected at 15-min intervals
with a luminescence reader (ALOKA BLR-
201; Mitaka, Tokyo, Japan). We measured
all samples including the negative control
(no fiber) with the same cell suspension at
10-sec intervals. We performed all reactions
at 37°C in RPMI 1640, each measurement
4 times.

Statistical analysis. We analyzed the
ability to induce CL per fiber of each sample
as described previously (20). Briefly, we
examined the relation between the estimated
number of fibers administered and CL
response by linear regression. The slope (β1)
of the regression line was taken as a measure
of the ability to induce CL per fiber. We
excluded the data of β1 for r2 < 0.9. We also
examined the relation between fiber size and
ability to induce CL by linear regression, and
calculated the increase in the rate of induc-
tion with two β1. We examined the time
course of the increase in the ability to induce
CL by power regression. Finally, we exam-
ined the relation between fiber size and
increased ability to induce CL using linear
regression. 

Results

The time course of the ability to induce CL
per fiber (β1). We tested the CL response of
all JFM preparations and controls at con-
stant rotation every 15 min by using a stock
of cells in suspension. We needed β1 to com-
pare the CL response of each sample at a
value not related to the number of fibers
administered. Table 1 shows β1 and r2. All
fiber samples except for WO1 induced a CL
response in a dose-dependent manner. Each
response was almost completely inhibited by
SOD, which is a superoxide scavenger (data
not shown). WO1 was excluded in subse-
quent analyses because its CL response
increased rectilinearly and the linearity of its
dose response was low (Table 1). Moreover,
we also excluded the β1 data for r2 < 0.9 at
each measurement time. 

As shown in Figure 1, each JFM stan-
dard reference sample produced a sigmoid-
type increase in β1. The pattern of increase
in β1 for each sample was similar, although
the values differed. 

The similarity of the increase in β1 to
JFM samples. We calculated the rate of
increase in β1 to demonstrate the similarity
of the response pattern to various mineral
fibers. Table 2 shows the rate for each time

point. Although each rate of increase was
different at 15–30, the kinetics of the rate
were relatively similar in these cases. As
shown in Figure 2, the rate of β1 decreased
for the power regression line. Table 3 shows
constants and the r2 of the power regression
lines. These comparisons showed the similar-
ity of each CL response more clearly.
However, the thickest fiber (RF3) and the
thinnest fiber (TO1) had slightly lower cor-
relations than other samples. The rate of
RF3 was low in the acute phase, and the rate
of TO1 was high in the acute phase. 

The relationship between β1 and fiber
length. Figure 3 shows a representative time-
dependent relation between geometric-mean
length and β1, used to examine the effect of
fiber length on CL response. The results are
shown in Table 4 with constants and the r2

of the regression lines. A close correlation
existed between length and β1 at each time
point, although four samples under approxi-
mately 6 µm in length (SC1, PT1, MG1,
and TO1) had a low β1. Therefore, a further
close correlation existed between length and
β1 with samples > 6 µm in length (GW1,
RW1, RF1, RF2, RF3, SC1, and PT1) after
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Table 1. Constants and r 2 of the regression lines for CL and estimated number of fibers.

Timea 0 15 30 45 60 75 90 105 120 
(min) β1

b r 2c β1 r 2 β1 r 2 β1 r 2 β1 r 2 β1 r 2 β1 r 2 β1 r 2 β1 r 2

GW1 15.34 0.110 280.0 0.960 1,052 0.958 2,492 0.942 3,489 0.927 4,333 0.941 4,643 0.920 4,642 0.947 4,735 0.940
RW1 9.869 0.406 345.4 0.966 1,072 0.979 1,920 0.961 2,735 0.959 3,581 0.952 3,946 0.924 4,209 0.937 4,352 0.938
MG1 0.436 0.339 21.97 0.972 66.20 0.902 112.1 0.818 153.8 0.815 182.0 0.819 179.8 0.798 162.7 0.761 142.2 0.735
RF1 0.664 0.020 168.3 0.920 517.9 0.992 1,021 0.985 1,601 0.975 1,955 0.952 2,035 0.928 1,877 0.865 1,580 0.780
RF2 –0.75 0.028 214.3 0.985 562.2 0.988 893.9 0.967 1,219 0.944 1,447 0.921 1,538 0.916 1,439 0.897 1,327 0.848
RF3 7.742 0.422 177.0 0.978 371.0 0.992 539.1 0.979 669.1 0.937 910.5 0.982 914.7 0.970 997.0 0.970 1,021 0.967
PT1 –0.03 0.162 2.130 0.971 6.100 0.940 9.600 0.896 11.40 0.818 10.40 0.685 8.900 0.608 6.700 0.484 4.800 0.373
SC1 0.307 0.228 7.600 0.917 24.40 0.992 49.20 1.000 77.80 0.996 110.6 0.996 123.1 0.994 128.9 0.992 132.4 0.990
TO1 –0.03 0.203 1.520 0.977 3.200 0.974 7.000 0.988 11.00 0.913 12.00 0.822 11.10 0.738 9.400 0.662 7.300 0.607
WO1 –0.29 0.072 –5.69 0.450 –2.90 0.041 8.900 0.124 28.20 0.338 61.80 0.580 95.30 0.688 118.8 0.765 137.1 0.786
aTime after administration; CL responses of 54 samples were measured in constant rotation at 15–min intervals with the same stock suspension of cells. bβ1 (× 10–9) is the slope of the
regression line for the estimated number of fibers administered and CL response with 5 concentrations and a duplicate negative control. The CL response is the mean value of the four
measurements. cSquare of the correlation coefficient of the regression line. 

Figure 1. Time course of ability to induce CL from
macrophages exposed to various mineral fibers
(β1 of Table 1). Each point is the mean from four
measurements. The defects are the cases where
r 2 is < 0.9 (shown in Table 1). 
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30 min. The relation between length and β1
lasted from the acute phase of the reaction to
120 min. 

The relationship between β1 and fiber
width. The World Health Organization
(WHO) classifies mineral fibers based on
length, width, and the aspect ratio of the
fiber (25). Figure 4 shows the relation
between geometric-mean width and β1 at 15
and 45 min. The results are shown in Table
5 with constants and the r2 of the regression
lines. As shown in Figure 4 and Table 5, we
observed a close correlation between width
and β1 for eight samples < 1.8 µm in width
at 15 min (r2 = 0.8766); however, this rela-
tionship did not continue (r 2 at 45 min =
0.5138). β1 correlated with width more than
with length at 15 min, but it correlated with
length more than with width after 30 min. 

The relationship between increase rate of
β1 and width. We examined the relationship
between rate of β1 and fiber width to
demonstrate the effect of the width from 15
to 60 min. Figure 5 shows a representative
relationship between rate of β1 and fiber
width. The results are shown in Table 6 with
constants and the r2 of the regression lines.
Although the tendency of this relationship at
15–30 min resembles that of β1 and width at

15 min (Figure 4A), we observed a correla-
tion at 30–45 min [r2 = 0.5309 (Figure 5B)]
and at 45–60 min [r 2 = 0.7473 (Figure
5C)]. However, a slope of the regression line
decreased over the time course. Moreover, as
shown in Table 2, the increase of β1 was
similar in each sample after 60 min.
Therefore, we saw no correlation at 60–75
min (Table 6). 

The relationship between increase rate of
β1 and length. We also examined the rela-
tion between rate of β1 and fiber length. The
correlation between these could not be rec-
ognized at any time point (data not shown). 

The relationship between CL response
and fiber sample weight. The relationship
between sample weight and CL response at
45 min is shown in Figure 6A. These data
were the most rectilinear for the
dose–response curve in the time-course mea-
surement. Table 7 shows a slope of regres-
sion line of the dose–response curves in mass
concentration. MG1 had the highest level,
and GW1 and RF3 had the lowest level.
However, the linearity of dose–response
curves did not continue in some samples.
The relationship between sample weight and
CL response at 120 min is shown in Figure
6B as reference. The dose–response curve of

some samples was saturated at various levels.
Short fibers tend to saturate the dose–response
curve at low dosage. 

Discussion

The results of the present study demonstrate
the time course and rate of the induction of
lucigenin-dependent CL in human mono-
cyte-derived macrophages for various man-
made and natural mineral fibers. Moreover,
we examined the time-dependent relation-
ships between fiber size and these parame-
ters. Even when the dosed number of fibers
differed for each sample, the ability to
induce CL per fiber could be approximated
using our analysis. 

Many intrapleural studies led to the con-
clusion that the fibrous shape of asbestos
dust particles is the cause of their carcino-
genicity in humans and that basically all
types of elongated dust particles such as min-
eral and vitreous fibers can induce tumors if
they are sufficiently long, thin, and durable
in the tissue (10,26). If this conclusion is
true, common reactivity in the mechanism
of tumor induction should exist between
asbestos and mineral and vitreous fibers.
Numerous studies have suggested that ROS
may underlie the pathogenesis of asbestos-
related lung diseases (11,27). However,
amphibole asbestos, which includes iron in
its fibers, plays a special role in ROS-medi-
ated pathology because it catalyzes the gener-
ation of the reactive hydroxyl radical from
hydrogen peroxide (11,28,29). In asbestos,
the hydroxyl radical can alter various bio-
logic effects (11–13). In biologic systems,
superoxide usually acts as the reductant pro-
ducing Fe2+, which rapidly decomposes
hydrogen peroxide to hydroxyl radicals
(29,30). The action of superoxide makes a
chain of reactions in which the net process
converts hydrogen peroxide to the hydroxyl
radical (29,31). Paradoxically, superoxide
activity may decide hydroxyl radical activity
in vivo, because hydrogen peroxide has
always been made in vivo if Fe3+ exists in
close proximity. Various mineral fibers cause
a significant increase in the release of super-
oxide from macrophages (18,19). Moreover,
tumorigenic fibers do not always have
hydroxyl radical activity in vitro (14). Silicon
carbide fibers, one type of tumorigenic fiber,
have no hydroxyl radical activity (14). Our
findings here suggest that macrophages have
common superoxide reactivity for various
types of fiber and that the activity of super-
oxide from macrophages has an important
role in biologic effects, depending on fiber
length. 

In early animal intraperitoneal studies, it
was suggested that the induction of pleural
sarcoma increased with the length of fibers
with diameters < 1.5 µm (32). However, a
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Table 2. Time course of the rate of increase in β1, in 15-min intervals.

1 2 3 4 5 6 7
No.a (15–30) (30–45) (45–60) (60–75) (75–90) (90–105) (105–120)

GW1 3.757 2.369 1.400 1.242 1.072 1.000 1.020
RW1 3.104 1.791 1.424 1.309 1.102 1.067 1.034
MG1 3.012 —b — — — — —
RF1 3.078 1.971 1.569 1.221 1.041 — —
RF2 2.623 1.590 1.364 1.186 1.063 — —
RF3 2.096 1.453 1.241 1.361 1.005 1.090 1.024
PT1 2.845 — — — — — —
SC1 3.216 2.013 1.582 1.421 1.113 1.047 1.027
TO1 2.131 2.165 1.572 — — — —
Average 2.874 1.907 1.450 1.290 1.066 1.051 1.026
SD 0.498 0.296 0.120 0.082 0.036 0.033 0.005
aTime-course order of the rate of increase in β1. The rates were calculated between continuing two data points, in minutes.
For example, the values at 1 are β1 at 30 min divided by the β1 at 15 min. bThe defects were the cases where r2 < 0.9. 
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Figure 2. Time course of the increase in β1. The
defects are the cases where r 2 is < 0.9. The
curves were approximated by power regression. 

Table 3. Constants and the r 2 of the power
regression lines for time course of the rate of
increase in β1. 

Fibers Aa Ba r 2b nc

GW1 3.601 –0.720 0.961 7
RW1 2.849 –0.563 0.970 7
MG1 – – – 1
RF1 3.123 –0.669 0.9959 5
RF2 2.512 –0.550 0.9829 5
RF3 1.983 –0.356 0.8972 7
PT1 – – – 1
SC1 3.136 –0.693 0.9889 7
TO1 2.240 –0.245 0.5681 3
aConstants of the power regression line for the time
course of the rate in Figure 2. For convenience, number-
ing was used to estimate the regression line. Equation, Y
= AXB; Y = rate of increase in Table 2, X = numbering of
the rate in Table 2. bSquare of the correlation coefficient
of the power regression line. Though constant, A
changes with the numbering; constant B and r 2 are fixed.
cEffective number.



relation between ROS and fiber width has
not been shown. We also tried to analyze the
effect of fiber width on the ability to induce
CL. Our results showed that wide fiber (a
width of 2.4 µm) has a low ability to induce
CL and that thin fibers cause a large acceler-
ation in the induction of CL in the acute
phase. However, our findings suggest that
the superoxide-mediated biologic effect of
width is weak because the effect of width on
the ability to induce CL was smaller than
that of length. If a biologic effect of width
does exist, thin fibers may be stronger than
thick fibers of the same length. 

WHO has classified fibers > 5 µm long,
< 3 µm diameter, with an aspect ratio > 3:1
(25). Our findings suggest that many air-
borne WHO fibers induce superoxide release
from macrophages depending on fiber
length. 

Long asbestos fibers are more effective
than short fibers in eliciting the release of
superoxide from macrophages (16). However,
the molecular mechanism by which asbestos
may augment the release of oxygen metabo-
lites from phagocytic cells is unclear. One
hypothesis is that oxidant release occurs non-
specifically during “frustrated” phagocytosis
by alveolar macrophages and polymorphonu-
clear leukocytes that are unable to ingest long
asbestos fibers completely (33). However, our
findings do not support this hypothesis,
because the time-dependent pattern (sigmoid
type) and increase of ability to induce CL
were similar for each sample except wollas-
tonite (Figures 1,2). These findings suggest
that though the release of superoxide from
macrophages occurs nonspecifically for many
mineral fibers, the intensity had already been
decided when fibers were phagocytosed to
some extent. If the release of superoxide
occurs during “frustrated” phagocytosis, the
intensity of that of short fibers should
decrease with the advance of phagocytosis. 

We speculated as to the reason why the
ability to induce CL increased with fiber
length when samples were longer than
approximately 6 µm. The regular transition
in the rate to induce CL in each sample sug-
gests that the intensity of the CL response is
decided at the initial stage of phagocytosis.
However, it cannot be considered that
macrophages recognized fiber length at the
initial stage of phagocytosis. In observations
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Figure 3. The relationship between geometric-mean length and β1 of Table 1. The line is a regression line
for samples > 6 µm in length. The data for r 2 < 0.9 were excluded. (A) Data at 15 min; this correlation is the
lowest. (B) Data at 45 min; this correlation is the highest. 

Figure 4. The relationship between geometric-mean width and β1 of Table 1. The continuous line is a
regression line with samples < 1.8 µm in width. (A) Data at 15 min; this correlation is the highest. (B) Data
at 45 min. 
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Table 4. Constants and the r2 of the regression lines for β1 of Table 1 and fiber length. 

Timea 0 15 30 45 60 75 90 105 120

Ab 0.080 2.027 68.27 149.7 211.2 332.1 360.7 367.3 376.2
Bb –4.062 –6.286 –259.1 –700.4 –983.5 –2,200 –2,423 –2,456 –2,509
r 2c 0.677 0.852 0.906 0.916 0.907 0.965 0.957 0.946 0.943
nd 9 9 9 7 7 6 6 4 4
Ae 1.068 23.04 82.77 186.8 263.2 332.1 360.7 367.3 376.2
Be –7.910 –102.2 –465.1 –1,241 –1,741 –2,200 –2,423 –2,456 –2,509
r 2f 0.738 0.819 0.937 0.976 0.962 0.965 0.957 0.946 0.943
n 7 7 7 6 6 6 6 4 4
aTime after administration (min). bAnalysis for nine samples. A and B are constants of the regression line for β1 and fiber
length. Equation: Y = AX + B; Y = β1 of Table 1, X = geometric-mean length of fibers, A, B = constants (× 10–9). cSquare of
the correlation coefficient of the regression line with whole samples. dEffective number. The data < 0.9 in r 2 of Table 1
were excluded, except for time 0. The data of time 0 are reference data. All effective data after 75 min were samples > 6
µm in length. eAnalysis for seven samples > 6 µm in length. A,B and equation were the same as b. fSquare of the correla-
tion coefficient of the regression line with samples > 6 µm in length. 
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Timea 0 15 30 45 60 75 90 105 120

Ab 5.930 232.8 719.7 1,196 1,686 1,917 2,134 2,429 2,519
Bb -0.911 -32.26 -88.98 68.85 119.7 426.2 386.6 580.1 571.3
r 2c 0.311 0.877 0.775 0.514 0.515 0.387 0.407 0.545 0.556
nd 8 8 8 6 6 5 5 3 3
aTime after administration (min). bAnalysis for eight samples < 1.8 µm in width. A and B are constants of the regression line for β1 and fiber width. Equation: Y = AX+B; Y = β1 of Table 1, X
= geometric-mean width of fibers, A,B = constants (× 10–9). cSquare of the correlation coefficient of the regression line. dEffective number. The data < 0.9 in r 2 of Table 1 were excluded,
except for time 0. The data of time 0 are reference data. 



by optical microscope, short fibers were
perpendicularly phagocytosed, and long
fibers were often tangentially phagocytosed
(data not shown). Therefore, we speculated
that tangential phagocytosis has a stronger
effect on the ability to induce CL than per-
pendicular phagocytosis. If this speculation
is true, a cause of the enhanced ability to
induce CL may be the increase in the tan-
gential phagocytic rate with lengthening of
fiber. Moreover, we speculated that tangen-
tial phagocytosis shifts to perpendicular
phagocytosis with fibers under approxi-
mately 6 µm in length. 

In general, many experimental protocols
have been conducted based on the mass con-
centration of fiber samples. Therefore, we
also show the CL response per sample
weight (Figure 6A) to allow comparison
with other experimental results. In compari-
son by mass concentration, our data showed
that the CL response is weak in both the
short samples and samples such as glass wool
and rock wool, which have low fiber num-
bers per unit weight. Mass concentration
study of glass wool and rock wool showed
no significant increase in tumor incidence in
rats (4,5). The data in Figure 6A are consis-
tent with these in vivo results. Moreover, a
durable special application fiber glass
(MMVF33, 106 fibers/cc > 20 µm) induced
lung fibrosis and a single mesothelioma in
hamsters; however, insulation fiber glass
(MMVF10a, 151 fibers/cc > 20 µm) did not
induce lung fibrosis or tumors (34). The
data in Figure 1 are consistent with the find-
ing that the glass fiber is not inert. 

Previous studies with various mineral
particles have suggested that the fibrous
geometry of particulates is of critical impor-
tance in the generation of superoxide from
macrophages (16,18,35). For example, for
amosite asbestos, dramatic enhancement of
release of superoxide has been found with
long fibers but not short ones (35). The dis-
tribution of length of the long fibers (50% >
approximately 14 µm long) is similar to that
of RF1 (mean length 12.0 µm), and the dis-
tribution of length of the short fibers (10% >
approximately 10 µm long) is similar to that
of MG1 (mean length 3.0 µm). Therefore,
our data on the relationship between fiber
length and ability to induce CL are consis-
tent with the asbestos data. Moreover, our
findings suggest that this relationship con-
tinues over the time course without effect of
fiber clearance. In contrast, murine peri-
toneal macrophages exposed to equal num-
bers of short and long crocidolite asbestos
fibers exhibited comparable hydrogen perox-
ide release (36). However, the mean length
of the long crocidolite fiber was 5.4 µm, and
the mean length of short fiber was 1.2 µm.
Our finding that the ability to induce CL was

similar among fibers under approximately 6
µm in length was also consistent with the
hydrogen peroxide data. 

These assays were performed with sus-
pended cells over a time course of 2 hr.
Many previous published studies of effects of
asbestos and mineral fibers on oxidant pro-
duction from alveolar macrophages have
used cells in suspension. However, many
studies of the effect of fiber length on oxidant
production and using monocyte-derived
macrophages have used adherent cells. For
some applications, suspended cells work better

than adherent cells for comparing the
response of cells. First, the number of cells in
each vial will be identical with that of cell
suspension. Second, the cells will have dif-
fuse contact with the fibers. We believe that
this advantage contributes to linearity of the
dose–response curve of CL response. Finally,
the cells may smoothly phagocytose the
fiber. We consider that these advantages help
reduce experimental error. 

One problem is whether wollastonite is
an exception. Although WO1 was excluded
in our analyses, r2 and β1 of WO1 increased
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Figure 5. The relationship between geometric-mean width and rate of β1. The continuous line is a regres-
sion line on the whole. (A) Data at 15–30 min. (B) Data at 30–45 min. (C) Data at 45–60 min; this correlation
is the highest. The data for r 2 < 0.9 were excluded. 

Figure 6. The relationship between sample weight and CL response. (A) Data at 45 min. (B) Data at 120
min. The data of WO1 were excluded. 
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Table 6. Constants and the r 2 of the regression lines for the rate of increase in Table 2 and fiber width.

No.a 1 2 3 4 5 6 7

Ab –0.161 –0.290 –0.139 0.012 –0.029 0.029 0.001
Bb 3.016 2.213 1.597 1.276 1.101 1.012 1.025
r 2c 0.055 0.531 0.747 0.010 0.316 0.505 0.044
nd 9 7 7 6 6 4 4
aTime-course order of the rate of increase in Table 2. bConstants of the regression line for the rate in Table 2 and fiber
width. Equation: Y = AX+B; Y = the rate in Table 2, X = geometric-mean width of fibers. cSquare of the correlation coeffi-
cient of the regression line. dEffective number. The data < 0.9 in r 2 of Table 1 were excluded. 

Table 7. A slope of regression line of each dose–response curve at 45 min in mass concentration.

Sample GW1 RW1 MG1 RF1 RF2 RF3 PT1 SC1 TO1

Slope (CL/mg) 1.744 3.264 7.285 8.980 7.777 1.887 5.658 20.18 4.495

Each r 2 was the same as that of Table 1.
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over the time course (Table 1). The response
for WO1 may be retarded; however, our
data are not sufficient to define WO1 as an
exception. 

In conclusion, it is suggested that
macrophages nonspecifically induce superox-
ide for various fiber types depending on fiber
length. Although the generation of hydroxyl
radical may be the most important difference
between amphibole asbestos and other min-
eral fibers, superoxide is a tumor promoter
and is involved in the generation of hydroxyl
radical. Our findings suggested that even inert
mineral fibers were not safe if the conditions
of durability, clearance, and respirability are
satisfied. Our findings have also revealed
important differences from the hypothesis
that oxidant release occurs during “frustrated”
phagocytosis. A remaining problem is to elu-
cidate the reasons why macrophages have
high superoxide activity for long fibers.
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